euh bonjours moi qui n'a pas compris cette exércise depuis hier pouvez vous m'aider s'il vous plaît je ne le comprend pas du tout vraiment merci
Question
je ne le comprend pas du tout
vraiment merci
1 Réponse
-
1. Réponse Skabetix
Bonjour,
[tex]U_{n} = {n}^{2} + 14n + 33[/tex]
1) On développe chacune des expressions
[tex]a. \: \: \: (n + 7) {}^{2} - 16 = 49 + 14n + {n}^{2} - 16 = {n}^{2} + 14n + 33 = U_{n}[/tex]
[tex]b. \: \: n(n + 14) + 33 = {n}^{2} + 14n + 33 = U_{n}[/tex]
c. n² + 33 ≠ n² + 14n + 33 ≠ Un
[tex]d. \: \: (n + 3)(n + 11) = {n}^{2} + 11n + 3n + 33 = {n}^{2} + 14n + 33 = U_{n}[/tex]
Il s'agit donc de l'expression (c)
2) On remplace n par les valeurs
[tex]U_{ - 3} = ( - 3 + 3)( - 3 + 11) = 0 \times 8 = 0[/tex]
[tex]U_{ - 11} = ( - 11 + 3)( - 11 + 11) = - 8 \times 0 = 0[/tex]
[tex]U_{ - 7} = ( - 7 + 7) {}^{2} - 16 = 0 - 16 = - 16[/tex]
3) On sais que Un = (n + 3)(n + 11)
on a donc (n + 3)(n + 11) = 0
n + 3 = 0 ou n + 11 = 0
n = -3 ou n = -11
S = {-11 ; -3}